IBM Power
IBM AIXに蓄積されたデータをH2O Driverless AIで分析
記事をシェアする:
IBM AIXは、ミッションクリティカルな業務システムに、安全性、拡張性、そして信頼性に優れたプラットフォームを提供します。企業が直面するビジネス・ニーズの変化に対応できるパフォーマンス、信頼性、およびセキュリティーを約束します。
IBM Power System AC922(Power AC922)は、AIワークロード用に設計されており、高性能の多様なAIフレームワークを効率的に実行してAIモデルを学習します。H2O Driverless AIは、Power AC922上で自動的に学習を行うフレームワークの1つです。AI学習の最大の課題は、AIモデルを効率的かつ高速に学習するために、適切なインフラストラクチャーとデータを利用できるようにすることです。
AIモデルを学習する際、お客様はデータから更なる洞察を発見するためにAIモデルをデプロイしたいと思っています。そのデータは、ミッションクリティカルなシステムであるPower SystemsのPowerVMベース・サーバーに存在しています。多くの場合これらのサーバーではAIXワークロードが稼働していますが、お客様はAI活用のために高レジリエントな(回復力の高い)Power Systemsから部分的にであってもデータを移動させたくないと考えています。
こうした懸念は、Power AC922上のH2O Driverless AIとAIXとを組み合わせることにより解決することができます。この記事では、お客様がPower AC922上のH2O Driverless AIプラットフォームを使用して機械学習とスコアリングを行い、PowerVMベース・システム上にAIモデルをデプロイしてインファレンス(推論)を行う方法について説明します。
学習/AIモデルの構築
AIX上のデータは、Power AC922上またはPower LE(リトル・エンディアン)のLinux VM上のいずれかで、H2O Driverless AIによるAIモデルの学習に使用されます。最適なパフォーマンスを得るためにはPower AC922システムをお薦めします。PowerVMベース・サーバー上のPower LE Linux VMでもAIモデルを学習することができます。H2O Driverless AIはCSV形式の学習用データを前提としています。IBM Db2など、AIX上で実行されているRDBMS(リレーショナル・データベース管理システム)のデータは、CSV形式でエクスポート可能です。このCSVファイルをH2O Driverless AIシステムにアップロードし(例:H2O Driverless AIのGUI画面で操作)、意思決定や予測を行うAIモデルを生成するための学習を実行します。
H2O Driverless AIへのファイルのアップロード後、H2O Ddriverless AIのGUI画面上でCSVファイルのカラムを選択します。この列に対して、生成されたAIモデルによる予測が実行されます。これでH2O GUIを使用して学習を呼び出すことができ、AIモデルが生成されます。スコアリング用のAIモデルをダウンロードしてデプロイするために、H2O Driverless AIは2つの方法、PythonコードまたはMOJO Javaコードを提供します。
MOJOスコアリング・パイプラインはより柔軟で高速に使用できるため、この記事ではMOJOスコアリング・パイプラインに焦点を当てます。H2O GUIを使用してMOJOスコアリング・パイプラインをダウンロードした後、お客様はデプロイしたいマシンにそれをコピーし、スコアリングを実行できます。
推論/AIモデルのデプロイ
前述のように、生成されたAIモデルはAIX VM (LPAR)からのデータのスコアリングのために2つの方法でデプロイできます。
1. AIモデルをPower AC922またはその他のPower Little Endian(LE)Linuxにデプロイする(図1)
2. PowerVMベースのシステム上で、AIX VMの隣にLE Linux VMを構築してAIモデルをデプロイする(図2)
ミッションクリティカルなワークロードとAIワークロードが稼働するVM間で、安全で高速かつ低オーバーヘッドのデータ移動が活用できるため、後者を選択することをお薦めします。 更に、「これらの堅実なAIXシステムからデータを移動したくない」というお客様の課題にも対応します。
図1:Power AC922にデプロイされたAIモデルと、異なるPower Systemsサーバー上で稼働するAIXのデータを活用したスタックのスコアリング
図2:Power AC922でビルドされたAIモデルと、PowerVMベースのIBM Power Systemsサーバー内のLinux VMにデプロイされたAIモデル。 スコアリングのデータをAIXから活用
以下の5つのステップを実行して、PowerVM VM(LE)上のLinuxにMOJOスコアリング・パイプラインをデプロイし、AIXデータのスコアリングに使用できるようにします:
1.datatableパッケージをダウンロードし、pipコマンドを使用してインストールします
#pip install https://s3.amazonaws.com/h2o-release/datatable/stable/datatable-0.9.0/datatable-0.9.0-cp36-cp36m-linux_ppc64le.whl
2.図3に示すように、H2O GUIの上部ナビゲーターからRESOURCES → MOJO2 PY RUNTIMEを選択して、daimojo-0.1+master.478-cp36-cp36m-linux_ppc64le.whlをダウンロードします
図3:H2O GUIからMOJO2 Pythonランタイムをダウンロード
3.pipコマンドを使用してwheelfileをインストールします
#pip install daimojo-2.0.1+master.478-cp36-cp36m-linux_ppc64le.whl
4.ライセンス・ファイルのパスを指定して環境変数をエクスポートします
#export DRIVERLESS_AI_LICENSE_FILE=//license
5.これで、Pythonコードを使用したスコアリングのためにMOJOパイプラインをロードできます。 サンプルのPythonコードを以下に示します。
まとめ
この記事では、IBM Power SystemsでH2O Driverless AIフレームワークを使用したエンタープライズAIライフサイクルを実行する方法をご紹介しました。 H2O Driverless AIを使用してPower AC922でAIモデルを生成し、お客様はPower AC922上、またはEnterprise Power Systems サーバー内(Power System E980、Power System E950、Power System S924など)で、AIXのデータを用いたスコアリングを実行します。 これにより、AIXユーザーが保有する環境にAIをデプロイする便利な方法が提供されます。
もちろん他にもAIXが稼働するPower System上に存在するデータにAI機能を活用する方法があります。たとえば、セキュア・ゲートウェイを介してIBM Watsonデータ・プラットフォームに接続する、AIX VMと共存するPowerVM VM上のLinuxでIBM Watson Machine Learning Community Edition(WML CE)を利用するなどです。そこで、この記事ではそのうちの1つの方法に焦点を当てました。
参考
MOJOパイプラインをロードするその他の方法は、こちらをご参照ください。
また、REST APIをエクスポートし、そのREST APIをAIXから使用してスコアリングを実行するカスタム・コード(例:Flaskサーバー)を作成することもできます。更に、JAVAランタイムを使用してMOJOパイプラインをデプロイし、次のようにスコアリングを実行することもできます。
*本記事は、H2O Driverless AI for Data on IBM AIXの抄訳です。
実用規模のワークロードで量子回路の深さを削減するフラクショナル・ゲート
フラクショナル・ゲートは、実用規模の実験の効率を向上するのに役立つ新しいタイプの量子論理ゲートです。 IBM® は、IBM Quantum Heron™ QPUに新しい種類の量子論理ゲートを導 […]
量子スピン鎖の大規模シミュレーションを行う量子アルゴリズム
Stony Brook大学の研究者は、計算能力の限界を押し進めて実用規模のスピン鎖シミュレーションを可能にするために、さまざまな量子シミュレーション手法を組み合わせて改良しています。 量子計算の起こりがいつ […]
基底状態問題について量子優位性の発見に役立つ評価指標
さまざまな計算手法の基底状態問題を解く能力を評価するのに役立つ指標を定義する論文が、新たに Scienceで発表されました。 量子優位性の発見は、今日の量子計算研究において重要な側面になってい […]