Data Science and AI

業績整理の方法とその意義とは ~IBMデータサイエンティスト認定審査の実践を通して~

記事をシェアする:

IBMでは、データサイエンティストの認定審査を実施している。審査をパスした人は、IBM Certified Data Scientistになれる。3年ほど前にGlobal Data Scientist Profession Boardが発足し、審査基準、審査プロセスなどの仕組みを整備すると共に、各国での運用展開を進めてきた。私自身もGlobalのBoardメンバーの一人として審査の仕組み構築に携わると共に、特にJapanでの運用展開を推進してきた。その審査活動を通して、数多くの人の審査申請書を見てきたが、「それは、凄いね!」と一瞬で伝わる申請書もあれば、質疑応答を何度か繰り返しようやく業績の本質を理解できる申請書もある。自分の業績を整理して第三者に適切に伝えることは、意外と難しいようである。先日「審査申請書の書き方ワークショップ」を社内で実施し、そこで業績の整理の仕方についてお話ししたので、その内容をご紹介しよう。

 

業績は「あなたの物語」として整理する

業績を整理する時、次の3つの要素で構成される「あなたの物語」として記すと、第三者に伝わりやすい。


表現を変えると、「困難な状況で、あなたがヒーローのように現れ、問題を見事に解決した」映画やドラマにあるような物語である。最初に、状況がどれだけ困難であったかを具体的に伝える。例えば、データが巨大、データの品質が悪い、問題の難易度が高い、ステークホルダーが多数、スケジュール制約が厳しいなどが挙げられるだろう。2番目に、あなたがどう考え行動したのかについてエッセンスを伝える。プロジェクトチームがしたことではなく、あなたがしたことにフォーカスして伝えることが大切である。最終的に選択したモデルは線形回帰かもしれない。しかしその結論に至る過程で、お客様の期待・優先順位をどう解釈し、どういう調査を実施し、どういう解法を設計し、どういう技術的選択肢を考え検証を実施し、結果の評価基準をどう設定し、お客様に結論をどう伝えて納得を得たのかについて整理する。3番目には、結果何が変わったか、つまりあなたが生み出した「状態変化」が何なのかをシンプルに伝える。例えば、予測モデルの運用フェーズがスタートした、製品としてリリースされた、展示会やプレスにリリースされた、お客様が追加投資を判断されたなどである。モデルの予測精度向上だけでは不十分で、それによって結果的に何が変わったのかを伝えることが重要である。上記に示した例は、Impactつまり自分が成し遂げたことであるが、もう1つの状態変化は、第三者からのRecognitionである。お客様から感謝状を頂いた、社内でアワードをもらった、講演や執筆の依頼を受けた、提案依頼を受けたなどがRecognitionの例である。分かり易い例として、10文字でシンプルに表現できる最高のRecognitionは「ノーベル賞をもらった」であろう。

 

特にIT業界で働く人は、業績をプロセスとアウトプットとして整理する癖があるように思う。その場合アウトプットは、予測モデル・システムや、最終報告資料などとなるわけだが、それだけでは何も伝わらない。つまり市販の半日データサイエンティスト研修に参加しても予測モデルを作るわけだが、それとの差を表現するのが難しい。そこで一生懸命具体化していくと、最終的にはプログラムコードに行きつくわけだが、業績の凄さを表現して第三者に伝える適切な抽象レベルを、その中間に見つけるのは難しいように思える。

 

業績を整理すると未来が見えてくる

このワークショップの最後に、業績を整理することの意義、つまり何を得られるのかについて私の経験をお話しした。2016年頃私は、IBMの技術最高職位であるDE (Distinguished Engineer)に向けて、過去約20年の業績を1つの物語に整理していた。その時、当時の部門リーダーCameron Artから、“You are in a journey to define yourself”という言葉をかけて頂いた。その意味を私なりに解釈すると、今あなたは「自分はどこから来て、この先どこへ行くのかを考える旅」をしているということ。つまり、過去の業績をきれいに整理できると、その延長線上にある自分の未来が見えてくるのだと。事実私が今やっている仕事は、そのときdefineしたことをある意味粛々と具体的に実行しているだけと言っても過言ではない。


日々の仕事に忙殺されていると、業績を整理する時間を捻出することは難しいものである。一方で業績を整理すると、費やした時間以上のものが得られる。皆さんもあるタイミングに狙いを定めて、業績を整理してみてはどうだろうか。

 

Atsushi Yamada / 山田敦
IBM DE (Distinguished Engineer) / 技術理事
Leader, Data Scientist Profession
IBM Japan

More Data Science and AI stories

伝統と革新 | 日本IBMユニバーサルデザイン・カレンダー制作の舞台裏

Client Engineering, IBM Partner Ecosystem

日本IBMはこれまでおよそ40年間にわたり、日本の美術品や絵画をテーマに壁掛けカレンダーを制作し、年末年始のご挨拶の際にお客様にお渡ししてきました。 しかし、オフィス空間や室内内装の在り方が大きく変化したここ数年で、壁に ...続きを読む


AI、エネルギー、食、人材育成 | 「IBM Think Lab Day@札幌」を4つのキーワードで

IBM Partner Ecosystem

お客様、パートナー様のビジネス課題の解決や一層の価値創造に役立つ共創を目指し、IBM Think Lab (弊社箱崎事業所、東京日本橋) ではIBM Researchの先端テクノロジー体験をお届けしています。 「先端テク ...続きを読む


IBM製品 サポート終了/営業活動終了情報 2024年10月発表分

IBM テクニカル・サポート

IBM 発表レター にて2024年10月にサポート終了日や営業活動の終了日が発表された主要製品についてお知らせします。           ■IBM Infrastruc ...続きを読む